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The second coordination sphere is a dodecahedron 
consisting of Th atoms. Th atoms of different 
trapezoids can be distinguished. Axes 74 of the dodeca- 
hedra built by P atoms pass along axis x for Th atoms 
of one trapezoid of the second coordination sphere and 
along axis y for Th atoms of another one, axis 74 of the 
central 'phosphorus' dodecahedron being directed along 
the z axis of the crystal. Axis 74 of the dodecahedron of 
Th atoms is also directed along the z axis but the 
dodecahedron of Th atoms (of the second coordination 
sphere) is rotated through an angle of 90 ° with respect 
to the P dodecahedron of the first coordination sphere. 
This process of 'expansion' of the crystal lattice may be 
continued infinitely. 

Discussion 

As follows from the examples considered above, the 
crystal-chemical model of atomic interactions is equally 
applicable to metals and intermetallic compounds, to 
substances with mainly ionic bonding, to covalent 
materials such as diamond, and to crystals with the van 
der Waals interactions (between inert-gas atoms). This 
is possible because the model takes into account the 
attraction between atoms and the mutual repulsion of 
filled electronic shells (skeletons) of atoms. The ability 
of the model to describe such a wide range of crystal 
structures should make it a universal tool for crystal- 
chemical analysis. 

In conclusion it should be noted that the examples 
used in the present paper were dictated not only by the 
crystal systems but also by the models of crystal 
structures collected at the Chemical and Geological 
Departments of the Moscow State University. Such 

models were a substantial help in the determination of 
the coordination spheres and made our work much 
more successful. 

The author is grateful to Dr V. T. Markov for 
assistance in producing the illustrations and to Dr L. I. 
Man who kindly translated this paper into English. 
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Abstract 

The crystal-chemical model of atomic interactions 
suggested by Aslanov [Acta Cryst. (1988), B44, 
449-458] has been verified on crystal structures of 
hexagonal, trigonal and tetragonal symmetry. The 
model includes the concept of close packing of spheres, 
but also explains the formation of structures with 
atomic arrangements deviating from closest packing. A 
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reduction of crystal symmetry affects individual atomic 
interactions and the shape of coordination polyhedra in 
the first and subsequent coordination spheres. 

Introduction 

In the previous paper (Aslanov, 1988) it has been 
shown that atoms in a crystal structure which interact 
one with another arrange in the crystal around the 
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central atom or a cluster and occupy the vertices of 
Platonic regular solids (PRS's), Archimedean semi- 
regular solids (ASRS's) or polyhedra built from 
triangular faces alone, e.g., an eight-vertex dodeca- 
hedron. The suggested model has been verified on cubic 
crystals characterized by isotropic atomic interactions. 
Twenty structure types have been derived, and the 
appearance of the translation symmetry in crystals has 
been explained. In the present paper the model is tested 
on 15 structure types of crystals belonging to the 
hexagonal, trigonal and tetragonal systems.* 

Model verification 

Hexagonal and trigonal systems 

Two-layer hexagonal packing (h.c.p.; . . .ABAB.. .)  is 
typical for structures of numerous metals, e.g., 
magnesium, and for the inert gas helium. The first 
coordination sphere of the central atom is built by 
neighboring atoms situated at the vertices of a 
hexagonal cuboctahedron not belonging to the ASRS's 
since its dihedral angles are of two different kinds. But 
the stability of such a polyhedron may be explained 
under the assumption that the curve of the pair- 
interaction energy for atoms in such a structure is less 
steep than for face-centered cubic (f.c.c.) crystals. 

This curve runs between similar curves (Fig. 1) for 
f.c.c. [curve (a)] and b.c.c. [curve (c)] structures. In this 
case the contribution to the total crystal energy from 
interacting atoms having no direct contact in the 
structure increases. It concerns, in particular, the 
interaction of atoms located on opposite faces of the 
cuboctahedron. Such interactions do not necessarily 
give rise to the transformation of the polyhedron into a 
hexagonal cuboctahedron. They may simply flatten the 
cuboctahedron along the threefold axis thus bringing 
the opposite triangular faces of the cuboctahedron 
closer to one another (as is the case in the structure of 
mercury) or flatten it along the fourfold axis bringing 
closer the opposite square faces of the cuboctahedron 
(as is the case in In and y-Mn structures). More often, 
however, another variant is encountered - all the 
vertices of the cuboctahedron remain on the sphere, 
whereas one of triangular faces rotates through 60 ° , 
thus transforming the cuboctahedron into its hexa- 
gonal analogue. The distances between the vertices of 
triangular faces forming the trigonal prism change upon 
rotation. Instead of six equal distances we now have 
three short and three long distances (Fig. 2). Short 
distances are observed along l~he edges of the trigonal 
prism parallel to the threefold axes, and long distances 
along the diagonals of rectangular faces. These dis- 
tances are on the right-hand side of the minimum of the 

* The data on space groups and atomic coordinates of the 
structures under consideration are taken from the Metals Reference 
Book (Smithells, 1976) and from Bokii (1954). 

atomic interaction curve (the minimum corresponds to 
the shortest distance, e.g., the distance between the 
atoms of the first coordination sphere and the central 
atoms). Since this portion of the curve is bent, the 
shortening of the distance may result in a decrease of 
the crystal energy which is much larger than the gain in 
the crystal energy caused by an increase of the distance 
(Fig. 2). This becomes more probable the steeper the 

(a) (~ (b) (e) (c) 

Fig. 1. Atomic interaction curves (arbitrary scale): (a) f.c.c., (b) 
h.c.p., (c) b.c.c., (e) structure of Zn or Cd, (/) structure of La 
(h.c.). 
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Fig. 2. The problem of variation in energy caused by thc 
substitution of a cuboctahedron by its hexagonal analoguc for a 
complcx of 13 atoms. (a) Interatomic distances (A) in the trigonal 
antiprism which is a fragmcnt of a cuboctahcdron: (b) Short (B) 
and long (C) interatomic distances in a trigonai prism which is a 
fragment of a hexagonal cuboctahedron. (c)Au~ is an increase in 
the energy of pairwise interaction owing to an increase of 
interatomic distances from A to C, Au 2 is a decrease in the energy 
of pairwise interaction owing to a decrease in interatomic 
distances from A to B, (Au~-Au2) is the total change in the 
energy. 
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right-hand portion of the curve in Fig. 2 becomes (but 
in all the cases it is less steep than for an f.c.c, crystal). 
The interactions between the atoms of the second 
coordination sphere may turn out to be so weak that 
their contribution to the crystal energy will be insig- 
nificant. Indeed, the second coordination sphere in 
h.c.p, crystals is a distorted trigonal prism with the edge 
of a triangular face (90.00 °) much larger than the edge 
parallel to the threefold axis (70.53°). In zinc and 
cadmium structures atoms interact presumably at 
distances larger than those known for other h.c.p. 
structures (the right-hand portion of the curve in Fig. 1 
is flatter). As a result, the trigonal prism of the second 
coordination sphere is more similar to an ASRS, 
namely, in the cadmium structure the angle of a 
triangular face becomes as low as 85.26 ° , whereas the 
edges parallel to the threefold axis increase up to 
78.47 °. Such changes are accompanied by a distortion 
of the first coordination sphere in the cadmium 
structure (in comparison with h.c.p.). The edges 
inclined to the threefold axes of the hexagonal cubocta- 
hedron increase from 60 to 63.11 o. But a flatter atomic 
interaction curve for cadmium (zinc) in comparison 
with that for h.c.p, structures (Fig. 1) provides only an 
insignificant increase of the crystal energy caused by 
such an elongation. 

The contribution which comes from atomic inter- 
actions in the second coordination sphere decreases the 
total energy of the crystal. 

Hexagonal close packing may also be built by atoms 
of different kinds forming different layers, e.g., two 
layers of S atoms and a third layer of Mo. In other 
words, the alternation of layers . . . A B A B A B . . .  
corresponds to the sequence of atoms 
. . .  MoSSMoSS . . . .  As a result, we arrive at the MoS2 
structure. 

Now consider the combinations of at least two 
coordination spheres in a way similar to that used in the 
previous paper (Aslanov, 1988). Let us assume that the 
first coordination sphere of the central atom is a 
tetrahedron (Fig. 3) and the second a hexagonal 
cuboctahedron which envelops the tetrahedron in the 
direction along the threefold axis and three symmetry 
planes passing along this axis. We thus arrive at the 
lonsdaleite structure - a hexagonal analogue of dia- 
mond. The same structure built by atoms of two 

different kinds corresponds to wurtzite (ZnS). For the 
latter structure it is not important which atom is placed 
at the center; what is important is that the different 
atoms alternate in subsequent coordination spheres, 
e.g., a Zn atom in the center, S atoms in the first 
coordination sphere and Zn atoms in the second 
coordination sphere. 

An important combination of coordination poly- 
hedra around the central atom is that of a trigonal 
prism flattened along the 3 axis in the first coordination 
sphere with a hexagonal cuboctahedron in the second 
sphere (Fig. 4). Each atom of the second sphere builds 
its surroundings up to a trigonal prism in its first 
coordination sphere and to a hexagonal cuboctahedron 
in the second sphere. Such a sequence leads to a lattice 
of the ... A B A C  . . .  or ch type. The representatives of 
this structure type (La, Pr, a-Nd) are seldom among the 
structures of simple substances. 

If a structure of the La type consists of an equal 
number of atoms of two kinds, we arrive at the NiAs 
structure with Ni atoms filling the cubic layers and As 
atoms filling the hexagonal layers ( . . . A B A B . . .  
... chch . . . . . .  NiAs NiAs ...). If the atomic ratio in a 
binary structure is 1:3, then one of four layers in the La 
structure is filled with one kind of atoms, whereas three 
other layers are occupied by atoms of the other kind. 
An example here is the ct-UO 3 structure where one of 
the cubic layers (A) is occupied by U atoms. The 
structure is flattened along the sixfold axis; as a result, 
an octahedron of the first coordination sphere of the U 
atom is complemented by two O atoms lying above the 
centers of the opposite faces of the octahedron, thus 
forming a slightly distorted cube. 

The structure of corundum (a-A1203) is also a 
derivative of the La type. Cubic layers A are occupied 
with A1 atoms whereas hexagonal layers (B and C) are 
filled by O atoms, positions A being filled only partly, in 
accordance with the stoichiometry. In each cubic layer, 
AI atoms form graphite-like nets displaced with respect 
to one another, which can be understood by comparing 
the corundum structure with NiAs. Thus the corundum 
structure belongs to the NiAs structure type in which 
Ni atoms are replaced by A1, and O atoms are replaced 
by As. The closest contacts in the structure are 
observed for Ni atoms forming chains along the short 
edges of trigonal prisms. Since two-thirds of the metal 

• 

la) 
Ib) 

Fig. 3. The lonsdaleite structure: (a) and (b) are the first and second 
coordination spheres, respectively. 

• ,,', 

(a) ' ~,, .4~" 

(b) 

Fig. 4. The lanthanum structure: (a) and (b) are the first and second 
coordination spheres, respectively. 
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positions are occupied, each third position in the series 
. . . A A @ A ~ ) . . .  is vacant. This makes remaining 
pa~rs of atoms move towards empty trigonal prisms, 
and results in the corrugation of A layers. Vacancies in 
the corundum structure are arranged over the vertices 
of a rhombohedron whose edges are equal to the 
diagonal of the rectangular face of a trigonal prism (the 
first coordination sphere of As atoms in the NiAs 
structure). This rhombohedron in NiAs is very close to 
a cube, being only slightly elongated along the threefold 
axis. The presence of vacancies results in the 'com- 
pression' of the rhombohedral lattice along the three- 
fold axis up to tx = 55.10 ° for corundum instead of 
et= 53.76 ° for ideal hexagonal packing. This makes 
the rhombohedron even more similar to a cube. As 
shown by the corundum structure, the first coordi- 
nation sphere of an O atom should not necessarily be a 
trigonal prism; it is sufficient to have only its fragment 
of four A1 atoms. 

The structure type of ilmenite, FeTiO 3, and LiNbO 3 
(Wells, 1984) differs from corundum only by the 
arrangement of metal atoms (in the FeTiO 3 structure 
they form layers). A layer of Fe atoms alternates with a 
layer of Ti atoms to form a hexagonal arrangement. In 
the LiNbO 3 structure, Li atoms are arranged at the 
vertices of rhombohedra such as those occupied by 
vacancies in the ~-A1203 structure, whereas Nb atoms 
occupy one-third of metal sites of the NiAs structure 
type and therefore are arranged at the vertices of 
rhombohedra such as those occupied by Li atoms and 
vacancies (small distortions of rhombohedra due to the 
corrugation of the layers of metal atoms can be 
neglected). If the ratio of metal to O atoms in the 
structure is 2:3, the La203 structure type is also 
possible. In the five-layered stack having cubic packing, 
O atoms form odd and La atoms even layers. The 
structure type of the stack is slightly distorted NaC1 
type, the distortions being caused by high coordination 
'capacity' of the La atoms and the low electronic donor 
ability of the O atoms (Aslanov & Porai-Koshits, 
1975). A five-layered stack is electrically neutral. The 
structure is built by imposition of the stacks one onto 
another as in cubic close packing. 

So in all the examples mentioned both cation and 
anion layers should be considered together, rather than 
considering anion packing with cations in the holes. 

Tetragonal system 

It is convenient to begin the analysis of tetragonal 
structures with the simplest one - protactinium (Fig. 5). 
The reference structure for protactinium is b.c.c, type. 
Let us consider a b.c.c, structure with the a and b axes 
rotated around the e axis by 45 o. The volume of the cell 
is doubled and the lattice is tetragonal face centered. In 
fact this is an f.c.c, lattice compressed along the 
fourfold c axisup to c/a = 1/V/2. Further compression 
to c/a = 1/V'3 gives the protactinium structure, where 
each atom has ten nearest neighbors and four atoms at 
a distance 22.5% longer. Thus, the coordination 
number in protactinium is 14 as in b.c.c, structures, but 
instead of the six distances in a b.c.c, structure to atoms 
of the second coordination sphere, each of which is 
15% longer than the distance to atoms of the first 
coordination sphere, there are only four distances 
22.5% longer than the shortest interatomic distance. 

A somewhat different structure is possessed by PtS 
(Fig. 6): the first coordination sphere of Pt atoms (a 
square of S atoms) has no threefold axes in contrast to 
the second coordination sphere (a cuboctahedron of Pt 
atoms); this reduces the crystal symmetry to tetrag- 
onal. 

The third example of a reduction in symmetry from 
cubic to tetragonal caused by individual features of the 
structure is chalcopyrite, CuFeS 2. Its unit cell is 
equivalent to two unit cells of the sphalerite type. All S 
atoms in chalcopyrite are surrounded by two Cu and 
two Fe atoms occupying the tetrahedron vertices, which 
results in doubling of the sphalerite-type unit cell. 

The above examples - protactinium, PtS and CuFeS 2 
- indicate that reduction of crystal symmetry to 
tetragonal may be associated with several factors. 

Discussion 

The crystal-chemical model of atomic interactions 
allows the determination of the conditions for the 
minimum potential energy of multiatomic systems 
without calculations of crystal energy. Firstly, the 
model takes into account pair interactions between 
atoms (the requirement for equality of edges for PRS's 
and ASRS's). These interactions seem to be decisive for 
the potential energy of a multiatomic system. Thus the 

(a) (b) 

Fig. 5. The protactinium structure: (a) and (b) are two coordination 
spheres. 

(a) 

' . .  , j  

Ib) 

Fig. 6. The PtS structure: (a) S, (b) Pt. 
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melting enthalpy of elemental metal crystals does not 
exceed 5% of the atomization energy of the same 
crystals. In other words, the condensation of a gas into 
a liquid is responsible for the largest part of the energy 
of a multiatomic system. Since a liquid has no 
long-range order, this energy should be ascribed to pair 
atomic interactions. This also explains the successful 
structural calculations based on the minimization of the 
potential energy of crystals obtained by summing the 
energies of pair interactions (see references in Aslanov, 
1988). 

Secondly, the model takes account of multiatomic 
interactions in two different ways. On the one hand, it 
takes into consideration the interactions of each atom 
with all the other atoms of the coordination sphere 
under question (the requirement of symmetry or 
congruence of polyhedral angles for PRS's and 
ASRS's). On the other hand, it takes into account the 
conditions necessary for the appearance of the trans- 
lation symmetry, which permits each atom of the 
crystal structure to be considered as the center of 
another central atom. The intersection of the co- 
ordination sphere of different central atoms provides 
the formation of a crystal structure. Thus the appear- 
ance of the crystal symmetry, including translation 
symmetry, follows from multiatomic interactions which 
make the potential energy of the system minimal. 

The idea that crystal symmetry is a result of the 
minimization of the potential energy of a crystal is not 
new. Now we may add that the crystal symmetry 
also follows from numerous multiatomic rather than 
pair interactions (pair interactions are known for any 
condensed phase but neither in liquids nor in amor- 
phous substances do they lead to the appearance of the 
long-range order). In other words, the model gives the 
solution to the problem of multiparticle interactions if 
the forces acting on them are of a central nature. 
Despite the fact that this solution is at the symmetry 
level, it is of interest not only for crystallography but 
also for other branches of science since it is the only 
known solution to this important problem. 

Another important problem in which polyhedra can 
be used in the model in addition to the PRS's and 
ASRS's. We have already invoked a hexagonal ana- 
logue of a cuboctahedron and an eight-vertex dodeca- 
hedron in which atomic interactions are of two types 
depending on the number of polyhedral angles. For the 
latter polyhedron, the requirement for edges to be equal 
is replaced by the requirement for interatomic dis- 
tances in the coordination sphere of a certain radius to 
be maximal, which unavoidably leads to polyhedra 
solely with triangular faces. Thus the coordination 

polyhedra should meet three important requirements: 
(i) they must have the maximum number of triangular 
faces for the given number of vertices, (ii) they must 
have the minimum number of groups with unequal 
edges, and (iii) they must have the minimum number of 
different (noncongruent) polyhedral angles. All three 
requirements are best met by a tetrahedron, an 
octahedron and an icosahedron. The systematic anal- 
ysis of polyhedra with allowance for all these require- 
ments is the subject of another paper, but we may 
mention here as an example a tricapped trigonal prism 
which should be the most favorable polyhedron among 
nonatops since all its faces are triangular, the edges 
form only two groups (those of the trigonal prism and 
those of the caps), and the polyhedral angles are also of 
only two kinds (the vertices of the trigonal prism and 
those of the caps). 

Thus proceeding from general principles, the model 
permits one to explain the diversity of known 
structure types. It has all the advantages of close 
packing, but in addition it provides an explanation of 
structures with less-dense packing. In contrast to the 
theory of close packing of spheres, the suggested model 
does not use atomic or ionic radii but takes account of 
interatomic distances which affect the energy of pair 
interactions. Abandoning the atomic and ionic radii 
permits one to avoid many problems, e.g., it becomes 
unimportant which ions form the framework of 
NaCl-type structures and which occupy the voids of 
such a framework if the structure is built by atoms 
of approximately equal ionic radii (e.g., KF). 

The further development of atomic interactions is 
essential for understanding layered structures similar to 
graphite. It seems that crystals of low or moderate 
symmetry may illustrate how individual features of 
atomic interactions can affect the crystal structures of 
various substances. The first results obtained in this 
direction are very promising. 

The author is grateful to Dr L. I. Man who kindly 
translated this paper into English. 
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